COPD and heart disease interactions

Ischaemic heart disease (IHD) and chronic obstructive pulmonary disease (COPD) often affect the same patient; in fact, more than one-third of patients with angiography-proven IHD also have COPD on spirometry(1).
A recent study suggests COPD exacerbations in patients with IHD were associated with longer (5 more days) recovery times and suffered more severe breathlessness between exacerbations(2).

An accompanying editorial highlights some important points:

  • Patients admitted with COPD exacerbations are more susceptible to myocardial infarction during the admission.
  • Infective COPD exacerbations may contribute to heart failure through systemic inflammation, autonomic activation, and increased fluid in the lung. Lung infection can increase ventilation/perfusion mismatch and increased work of breathing, further straining the heart.
  • Heart failure can be very difficult to diagnose during a COPD exacerbation because cough, dyspnoea and wheeze are common to both disorders. Physical examination may not be discriminatory, and chest radiography is insensitive to milder degrees of heart failure.

The authors recommed a high index of suspicion combined with consideration of biomarkers (BNP or pro-BNP) and imaging such as echocardiography or even nuclear medicine scans, cardiac MRI, and cardiac catheterisation.

So, next time you’re managing a COPD exacerbation, ask yourself:

  • Could there be concomitant heart failure contributing to symptoms?
  • If not, is the patient at risk of cardiac events during this admission, for which we need to be vigilant?
  • Do I need to consider additional laboratory (BNP) or imaging (echo) investigations? Remember BNP may be elevated in pneumonia and other non-cardiac critical illness, although a normal BNP rules out heart failure.
  • Should I add empiric anti-failure therapy to the acute treatment regimen?
  • If there is combined COPD exacerbation and heart failure, are there any conflicting priorities in therapy (eg. the pros and cons of beta-agonists, anticholinergics, and steroids)?

1. The complex relationship between ischemic heart disease and COPD exacerbations
Chest. 2012 Apr;141(4):837-8

2. The impact of ischemic heart disease on symptoms, health status, and exacerbations in patients with COPD
Chest. 2012 Apr;141(4):851-7

BACKGROUND: Comorbid ischemic heart disease (IHD) is a common and important cause of morbidity and mortality in patients with COPD. The impact of IHD on COPD in terms of a patient’s health status, exercise capacity, and symptoms is not well understood.

METHODS: We analyzed stable-state data of 386 patients from the London COPD cohort between 1995 and 2009 and prospectively collected exacerbation data in those who had completed symptom diaries for >= 1 year.

RESULTS: Sixty-four patients (16.6%) with IHD had significantly worse health status as measured by the St. George Respiratory Questionnaire (56.9 ± 18.5 vs 49.1 ± 19.0, P = .003), and a larger proportion of this group reported more severe breathlessness in the stable state, with a Medical Research Council dyspnea score of >= 4 (50.9% vs 35.1%, P = .029). In subsets of the sample, stable patients with COPD with IHD had a higher median (interquartile range [IQR]) serum N-terminal pro-brain natriuretic peptide concentration than those without IHD (38 [15, 107] pg/mL vs 12 [6, 21] pg/mL, P = .004) and a lower exercise capacity (6-min walk distance, 225 ± 89 m vs 317 ± 85 m; P = .002). COPD exacerbations were not more frequent in patients with IHD (median, 1.95 [IQR, 1.20, 3.12] vs 1.86 (IQR, 0.75, 3.96) per year; P = .294), but the median symptom recovery time was 5 days longer (17.0 [IQR, 9.8, 24.2] vs 12.0 [IQR, 8.0, 18.0]; P = .009), resulting in significantly more days per year reporting exacerbation symptoms (median, 35.4 [IQR, 13.4, 60.7] vs 22.2 [IQR, 5.7, 42.6]; P = .028). These findings were replicated in multivariate analyses allowing for age, sex, FEV(1), and exacerbation frequency where applicable.

CONCLUSIONS: Comorbid IHD is associated with worse health status, lower exercise capacity, and more dyspnea in stable patients with COPD as well as with longer exacerbations but not with an increased exacerbation frequency.

Head injury was not predictive for cervical spine injury

Two papers examining the same massive European trauma dataset identify risk factors for spinal injury. The first examined all spinal injury(1), and the most recent focuses on cervical injury(2). Male gender, decreased GCS, falls > 2m, sports injuries, and road traffic collisions were predictors of any fracture/dislocation or cord injury. Head injury was not an independent risk factor, contrary to much popular teaching. I’ve summarised the two papers’ findings in this table. The odds ratios are reported in the abstracts.

Download Keynote presentation slide (for Mac)

1. Epidemiology and predictors of spinal injury in adult major trauma patients: European cohort study
Eur Spine J. 2011 Dec;20(12):2174-80. Free full text

This is a European cohort study on predictors of spinal injury in adult (>=16 years) major trauma patients, using prospectively collected data of the Trauma Audit and Research Network from 1988 to 2009. Predictors for spinal fractures/dislocations or spinal cord injury were determined using univariate and multivariate logistic regression analysis. 250,584 patients were analysed. 24,000 patients (9.6%) sustained spinal fractures/dislocations alone and 4,489 (1.8%) sustained spinal cord injury with or without fractures/dislocations. Spinal injury patients had a median age of 44.5 years (IQR = 28.8-64.0) and Injury Severity Score of 9 (IQR = 4-17). 64.9% were male. 45% of patients suffered associated injuries to other body regions. Age <45 years (>=45 years OR 0.83-0.94), Glasgow Coma Score (GCS) 3-8 (OR 1.10, 95% CI 1.02-1.19), falls >2 m (OR 4.17, 95% CI 3.98-4.37), sports injuries (OR 2.79, 95% CI 2.41-3.23) and road traffic collisions (RTCs) (OR 1.91, 95% CI 1.83-2.00) were predictors for spinal fractures/dislocations. Age <45 years (>=45 years OR 0.78-0.90), male gender (female OR 0.78, 95% CI 0.72-0.85), GCS <15 (OR 1.36-1.93), associated chest injury (OR 1.10, 95% CI 1.01-1.20), sports injuries (OR 3.98, 95% CI 3.04-5.21), falls >2 m (OR 3.60, 95% CI 3.21-4.04), RTCs (OR 2.20, 95% CI 1.96-2.46) and shooting (OR 1.91, 95% CI 1.21-3.00) were predictors for spinal cord injury. Multilevel injury was found in 10.4% of fractures/dislocations and in 1.3% of cord injury patients. As spinal trauma occurred in >10% of major trauma patients, aggressive evaluation of the spine is warranted, especially, in males, patients <45 years, with a GCS <15, concomitant chest injury and/or dangerous injury mechanisms (falls >2 m, sports injuries, RTCs and shooting). Diagnostic imaging of the whole spine and a diligent search for associated injuries are substantial.

2. Epidemiology and predictors of cervical spine injury in adult major trauma patients: a multicenter cohort study
J Trauma Acute Care Surg. 2012 Apr;72(4):975-81

Patients with cervical spine injuries are a high-risk group, with the highest reported early mortality rate in spinal trauma.

METHODS: This cohort study investigated predictors for cervical spine injury in adult (>= 16 years) major trauma patients using prospectively collected data of the Trauma Audit and Research Network from 1988 to 2009. Univariate and multivariate logistic regression analyses were used to determine predictors for cervical fractures/dislocations or cord injury.

RESULTS: A total of 250,584 patients were analyzed. Median age was 47.2 years (interquartile range, 29.8-66.0) and Injury Severity Score 9 (interquartile range, 4-11); 60.2% were male. Six thousand eight hundred two patients (2.3%) sustained cervical fractures/dislocations alone. Two thousand sixty-nine (0.8%) sustained cervical cord injury with/without fractures/dislocations; 39.9% of fracture/dislocation and 25.8% of cord injury patients suffered injuries to other body regions. Age >= 65 years (odds ratio [OR], 1.45-1.92), males (females OR, 0.91; 95% CI, 0.86-0.96), Glasgow Coma Scale (GCS) score <15 (OR, 1.26-1.30), LeFort facial fractures (OR, 1.29; 95% confidence interval [CI], 1.05-1.59), sports injuries (OR, 3.51; 95% CI, 2.87-4.31), road traffic collisions (OR, 3.24; 95% CI, 3.01-3.49), and falls >2 m (OR, 2.74; 95% CI, 2.53-2.97) were predictive for fractures/dislocations. Age <35 years (OR, 1.25-1.72), males (females OR, 0.59; 95% CI, 0.53-0.65), GCS score <15 (OR, 1.35-1.85), systolic blood pressure <110 mm Hg (OR, 1.16; 95% CI, 1.02-1.31), sports injuries (OR, 4.42; 95% CI, 3.28-5.95), road traffic collisions (OR, 2.58; 95% CI, 2.26-2.94), and falls >2 m (OR, 2.24; 95% CI, 1.94-2.58) were predictors for cord injury.

CONCLUSIONS: 3.5% of patients suffered cervical spine injury. Patients with a lowered GCS or systolic blood pressure, severe facial fractures, dangerous injury mechanism, male gender, and/or age >= 35 years are at increased risk. Contrary to common belief, head injury was not predictive for cervical spine involvement.