Conjunctivitis: No Antibiotics, Please!

It’s the sad state of modern medicine – choose a common ambulatory condition, and you can find widespread avoidable overuse and waste. There is a spectrum of acceptability to this practice variation, of course, depending on the severity of consequences for missed or delayed diagnoses – but, for the most part, we’re just setting our professional respectability aflame.

This is a simple retrospective review of prescriptions associated with diagnoses of acute conjunctivitis. These authors reviewed records from a large managed care network and identified 340,372 patients with a clinical visit coded for acute conjunctivitis. Within 14 days of this visit, 58% of patients filled prescriptions for topical ophthalmologic medications. Considering most conjunctivitis encountered in the clinical setting is viral or allergic, obviously, the vast majority of these are wholly unnecessary. Then, frankly, while topical antibiotics mildly hasten the improvement of bacterial conjunctivitis, it is still a generally self-limited condition.

Ophthalmologists and optometrist visits were the least likely to have an antibiotic prescription associated with a visit for acute conjunctivitis, but 36% and 44%, respectively. Urgent Care Physicians and “Other Provider” – probably inclusive of Emergency Medicine – were at 68% and 64%, respectively. Fluoroquinolones accounted for 33% of antibiotic prescriptions – which is fabulous, because they are typically the most costly, and result in both increased risk for antimicrobial resistance and S. aureus endophthalmitis. Then, one in five prescriptions were for combination corticosteroid-antibiotic combination products – which are contraindicated, as they can prolong viral infections or worsen an underlying herpes simplex infection.

The American Academy of Ophthalmology contribution to Choosing Wisely recommends avoiding antibiotic prescriptions for viral conjunctivitis, and deferring immediate antibiotic therapy when the cause of conjunctivitis is unknown. Stop the madness! Everyone!

“Antibiotic Prescription Fills for Acute Conjunctivitis among Enrollees in a Large United States Managed Care Network”

https://www.ncbi.nlm.nih.gov/pubmed/28624168

The Shenfu Wave Continues

It was just a few months ago where I featured a brief review of Shenfu injection for the treatment of patients with septic shock. The conclusion: promising, yet – possibly because I’m simply culturally obtuse – a healthy dose of skepticism seems warranted.

This is another example of Shenfu injection in a randomized, controlled trial – this time for in-hospital cardiac arrest. Shenfu, just to recap:

Shenfu injection (SFI), produced by using multistage counter current extraction and macroporous resin adsorption technology, is a well-known TCM formulation containing ginseng (Panax; family: Araliaceae) and aconite (Radix aconiti lateralis preparata, Aconitum carmichaeli Debx; family: Ranunculaceae). Ginsenosides and aconite alkaloids are the main active ingredients in Shenfu.

In this trial, patients were randomized – in open-label fashion – to either a post-resuscitation bundle, or the same bundle plus twice-daily 100mg Shenfu infusions. Treatment was continued for 14 days or transfer out of the ICU, whichever came first.

These authors assessed 1,022 patients, 44 of whom were not randomized because consent could not be obtained. The remaining 978 were allocated to the two arms, approximately 35 of whom in each group died before receiving the study intervention. Baseline characteristics, adjudicated cause of arrest, presenting rhythm, and follow-up care were similar between the two groups. The most common rhythm, by far, was asystole, at ~82% of each group.

The winner, again, is the Shenfu injection cohort, by far. 28-day survival was 42.7% versus 30.1%, 90-day survival was 39.6% vs. 25.9%, median ventilation and hospital length of stay were ~4 days shorter, and hospital costs reflected these shorter time periods. Not only was survival improved, but a greater proportion of survivors were discharged with cerebral performance scores of 1 or 2, rather than with severe disability or coma.

There are obvious limitations, the lack of blinding for the treating physicians most potentially biasing. However, this is, again, a large effect size for a very meaningful outcome. Considering the other utter rubbish otherwise approved and marketed in modern medicine, it should be prioritized, to say the least, to further evaluate in a prospective fashion – particularly outside of China.

Now, if we wanted to get television-miracle levels of survival, we should just combine this with high-dose Vitamin C therapy!

“Efficacy and Safety of Combination Therapy of Shenfu Injection and Postresuscitation Bundle in Patients With Return of Spontaneous Circulation After In-Hospital Cardiac Arrest: A Randomized, Assessor-Blinded, Controlled Trial”
https://www.ncbi.nlm.nih.gov/pubmed/28661970

Idarucizumab, the Sequel

There’s nothing hotter than idarucizumab, the reversal agent for dabigatran. It’s so hot, the New England Journal of Medicine once published a farcical 91 patient interim analysis of a planned 500 patient enrollment.  Now, two years later, we have the full cohort and it’s, well, more of the same, with all the flaws previewed in the previous iteration.

To recap, there are no viable reversal options for dabigatran besides this antibody fragment. And, in full sucker-born-every-minute fashion, Boehringer Ingelheim is both good cop and bad cop, selling us both the poison and the antidote.

There are 503 patients enrolled in this open-label study with two arms: Group A, with uncontrolled bleeding, or Group B, anticoagulated and requiring an urgent procedure. The primary outcome is, essentially, utterly unrelated to any of the context of enrollment – “maximum percentage reversal of the anticoagulant effect of dabigatran within 4 hours after the administration of idarucizumab”, which is frankly already well-documented in the healthy-volunteer pharmacokinetic studies.

Theoretically, the interesting portion here is supposed to be the clinical relevance of the reversal effect – which is measured by secondary outcomes of subjective assessment of median time to cessation of bleeding in Group A or by periprocedural hemostasis in Group B. The most striking result in the interim result was a median time to cessation of bleeding of 11.4 hours – a concerningly high number calling into question the entire purpose of reversal. In this new publication, the median time to reversal is now reported as 2.5 hours. This also, oddly, differs from nearly identical cohort results presented to the American Heart Association – explicitly broken down as shown below:

Then, compare with this slide passed along by @bloodman from #ISTH2017 in Berlin:

Considering this was an easily critiqued result – and essentially the most clinically relevant – it’s not surprising the sponsor and their funded- and fee-supported collaborators solved the issue in the most expeditious fashion possible: exclude >55% of Group A from time-to-bleeding assessment.  Just toss out the patients who didn’t have cessation of bleeding within 24 hours, or – despite inclusion criteria of “signs and symptoms of (overt) uncontrolled bleeding” – the “bleeding location could not be identified”.

Most (93.4%) of patients in Group B were assessed as having normal hemostasis during their procedures, which occurred a median of 1.6 hours after completion of idarucizumab infusion. That said, many of the procedures were minimally invasive (catheter placement for dialysis, lumbar puncture, cutaneous abscess drainage) and likely favorably influenced both the fraction reported having normal hemostasis, as well as driving down the time to the intended procedure.

About 10% of the cohort had normal hemostasis at baseline as judged by the central laboratory, meaning they were likely not taking the dabigatran as reported or suspected – a smaller percentage than the interim analysis, where almost 25% were not. Whether this reflects better enrollment screening, or simply moving the goalposts again, cannot be reliably discerned from the results provided. Adverse events relating to the study drug, likewise, are difficult to parse without a true unexposed comparator.  Most of the cohort was elderly, with multiple comorbid conditions, in addition to their serious bleeding event or need for urgent procedural intervention. A handful of early thrombotic events and hypersensitivity-type reactions occurred, demonstrating there may yet be some consequential, but poorly quantified, risk to idarucizumab administration.

But, hand-wringing aside, we’re in the same place we were yesterday. Idarucizumab clearly and effectively removes dabigatran from circulation, unlike andexanet alfa and Factor-Xa inhibitors, and this ought to be occasionally clinically useful. I would certainly exhaust all potential supportive and expectant management options first, as well as try to definitively confirm dabigatran as the culprit for abnormal hemostasis. Ultimately, the best way to avoid idarucizumab? Don’t use dabigtran in the first place.

“Idarucizumab for Dabigatran Reversal — Full Cohort Analysis”

http://www.nejm.org/doi/full/10.1056/NEJMoa1707278